An Energy Revolution
By Robert ZubrinThe world economy is currently running on a resource that is controlled by our enemies. This threatens to leave us prostrate. It must change—and the good news is that it can change, quickly.
Using portions of the hundreds of billions of petrodollars they are annually draining from our economy, Middle Easterners have established training centers for terrorists, paid bounties to the families of suicide bombers, and funded the purchase of weapons and explosives. Oil revenues underwrite new media outlets that propagandize hatefully against the
And we have not yet reached the culmination of the process.
Our responses to these provocations have been muted and hapless. Why? Because any forceful action on our part against nations like
And the situation is even worse below the surface. In addition to financing terror directly and indirectly, oil exporters are using their wealth to corrupt our political system. Important
All this, however, is mere prologue.
In light of these realities, current
CONSERVATION AND ALTERNATIVE-FUEL DAYDREAMS
Ritualistic calls by utopians, moralists, and environmental absolutists for energy conservation are utterly inadequate and doomed to failure. To see this, simply run the numbers. Every year, about 17 million cars are sold in the
Conservation, however, offers no prospect of being even this effective. Most industry analysts predict a hybrid market share of less than 1 percent. At the same time, the total number of cars is increasing. Under any realistic conservation scenario, total gasoline consumption will continue to rise and the looting of our economy by oil producers will continue. Conservation through gasoline efficiency is, quite simply, a losing strategy. It is like trying to survive in a gas chamber by holding your breath. We need to break out of the gas chamber.
Today’s favorite alternatives to oil are wind, solar, hydroelectric, and nuclear power. They each have strengths and weaknesses, but the bottom line is that these are all methods of generating electricity—and electricity is far from the central issue of energy independence. The
The key to energy independence, rather, is liquid fuel to power cars, trucks, trains, ships, and airplanes. These vehicles are not mere conveniences; they are the sinews of our economy and the fundamental instruments of our military strength. Our civilization cannot be sustained without efficient liquid fuels, and there is no foreseeable prospect whatsoever of cost effective, large-scale generation of liquid fuels from wind, solar, hydroelectric, or nuclear sources.
The energy panacea of the moment is a concept called the “hydrogen economy.” Theorists propose to transition
Hydrogen is not a source of energy. In order to be obtained, it must be made—either through the electrolysis of water, or through the breakdown of petroleum, natural gas, or coal. Either process necessarily consumes more energy than the hydrogen it produces.
When hydrogen is made by electrolysis, the process yields 85 units of hydrogen energy for every 100 units of electrical energy used to break down the water. That is 85 percent efficiency. If the hydrogen is then used in a fuel cell in an electric car, only about 55 percent of its energy value will be used; the rest is wasted to heat and so forth. The net result of these two processes: the amount of useable energy yielded by the hydrogen will be only about 47 percent as much as went into producing it in the first place. And if the hydrogen is burned in an internal combustion engine to avoid the high production costs of fuel cells, the net efficiency of this vehicle will be closer to 25 percent.
Hydrogen produced from hydrocarbons instead of water also throws away 40 to 60 percent of the total energy in the feedstock. This method actually increases the nation’s need for fossil fuels, as well as greenhouse gas emissions. While hydrogen could also be produced by nuclear, hydroelectric, solar, or wind power, the process would continue to be dragged down by the fundamental inefficiency of hydrogen production. Such power supplies could always do more to reduce fossil fuel requirements simply by sending their electric power directly to the grid.
The bottom line is that hydrogen is not a source of energy. It is a carrier of energy, and one of the least practical carriers we know of.
Consider: A standard molecular weight (or mole) of hydrogen gas, when reacted with oxygen, yields 66 watt-hours of energy. Meanwhile, a mole of methane (the primary component of natural gas) produces 218 watt-hours of energy. An equal number of moles of both can be stored in a tank of equal size and strength. Thus, a car that runs on compressed methane will be able to store more than three times the energy, and travel three times as far, as the same car running on hydrogen. In addition, the methane would be cheaper.
In short, from the point of view of production, distribution, environmental impact, and ease of use, the hydrogen economy makes no sense. Its fundamental premise is at variance with the most basic laws of physics. The charlatans who are promoting hydrogen as a solution to our energy woes are doing the nation an immense disservice.
THE ALCOHOL SOLUTION
To liberate ourselves from the threat of foreign economic domination, undercut the financiers of terror, and give ourselves the free hand necessary to deal with Middle Eastern extremists, we must devalue their resources and increase the value of our own. We can do this by taking the world off the petroleum standard and putting it on an alcohol standard.
This may sound like a huge and impossible task, but with gasoline prices well over $2 per gallon, the means to accomplish it are now at hand. Congress could make an enormous step toward American energy independence within a decade or so if it would simply pass a law stating that all new cars sold in the
The largest producers of both ethanol and methanol are all in the western hemisphere, with the
Ethanol can currently be produced for about $1.50 per gallon, and methanol is selling for $0.90 per gallon. With gasoline having roughly doubled in price recently, and with little likelihood of a substantial price retreat in the future, high alcohol-to-gasoline fuel mixtures are suddenly practical. Cars capable of burning such fuel are no futuristic dream. This year,
Flexible-fuel vehicles (FFVs) offer consumers little advantage right now, because the high-alcohol fuels which they could employ are not generally available for purchase. This is because there are so few such vehicles that it doesn’t pay gas station owners to dedicate a pump to cater to them. Were FFVs made the standard, however, the fuel they need would quickly be made available everywhere.
If all cars sold in the
States could become the world’s largest fuel exporter. A large portion of the money now going to Arabs and Iranians would instead go to the
By promoting agriculture, FFVs also act as global cooling agents. Plants draw CO2 out of the atmosphere. They increase water evaporation, and the water vapor thus produced transports heat from the Earth’s surface to the upper atmosphere, where most of it is released to space.
The use of alcohol also reduces air pollution. In fact, environmental advantages were the motivation for the initial development of the first FFVs in
Methanol can also be used as the raw material to produce dimethyl ether, a completely clean-burning diesel fuel which could be used by trucks, locomotives, and ships. Many cars could also eventually use diesel. Diesel engines are substantially more efficient than traditional internal combustion engines, and equal to anything realistically possible from far more expensive, and as yet impractical, fuel cells.
THE ECONOMICS AND TECHNOLOGY HAVE ARRIVED—NOW FOR THE POLITICS
Two developments make a rapid transfer to high-alcohol fuels possible. One is the recent rise of gasoline prices, making methanol and ethanol economically attractive. The other is a technological innovation: the development by the
Research Institute for Road Vehicles of a sensor capable of continuously measuring the alcohol content in mixed alcohol/gasoline fuel, and using this information to regulate the engine.
With this breakthrough, some 4.1 million vehicles were produced between 1998 and 2004 capable of handling various alcohol/ gasoline combinations. That is already five times the number of gasoline/electric hybrids on the road, and vastly increased use of such vehicles could happen overnight, for just a few hundred dollars extra per vehicle (compared to many thousands more for hybrids).
The only sticking point is the non-availability of high alcohol fuel mixes at the pump. Filling stations don’t want to dedicate space to a fuel mix used only by 1 percent of all cars. And consumers are not interested in buying vehicles for which the preferred fuel mix is unavailable.
This chicken-and-egg problem can be readily resolved by legislation. One major country has already done so. In 2003, Brazilian lawmakers mandated a transition to FFVs, with some tax incentives included to move things along. As a result, the Brazilian divisions of Fiat, Volkswagen, Ford, Renault, and GM all came out with ethanol FFV models in 2004, which took 60 percent of the country’s new vehicle sales that year. By 2007, 80 percent of all new vehicles sold in
ETHANOL OR METHANOL?
To date, all FFVs have been either methanol/gasoline designs or ethanol/gasoline designs. Combined methanol/ethanol/gasoline FFVs have not yet been produced. Their development poses only modest challenges, however. The question is, which alcohol would be the best one upon which to base our future alcohol-fuel economy?
Methanol is cheaper than ethanol. It can also be made from a broader variety of biomass material, as well as from coal and natural gas. And methanol is the safest motor fuel, because it is much less flammable than gasoline (a fact that has led to its adoption by car racing leagues).
On the other hand, ethanol is less chemically toxic than methanol, and it carries more energy per gallon. Ethanol contains about 75 percent of the energy of gasoline per gallon, compared to 67 percent for methanol. Both thus achieve fewer miles per gallon than gasoline, but about as many miles per dollar at current prices, and probably many more miles per dollar at future prices.
Methanol is more corrosive than ethanol. This can be dealt with by using appropriate materials in the automobile fuel system. A fuel system made acceptable for methanol use will also be fine for ethanol or pure gasoline.
Both ethanol and methanol are water soluble and biodegradable in the environment. The consequences of a spill of either would be much less than that of petroleum products. If the
Exxon Valdez had been carrying either of these fuels instead of oil, the environmental impact caused by its demise would have been negligible.
Ethanol is actually edible, whereas methanol is toxic when drunk. This difference, though, should not be overdrawn, since in an FFV economy, both would be mixed with gasoline. The breakdown products of both ethanol and methanol are much less noxious than those from petroleum, and both emit far fewer particulates when burned. Methanol, ethanol, and gasoline are about equal in the levels of nitrous oxide and carbon monoxide produced when they are burned. Since it is made exclusively from agricultural products, ethanol acts as counter to global warming. Methanol can as well, but only if its source is agricultural. Methanol produced from coal or natural gas has about the same impact on global warming as gasoline.
In short, either methanol or ethanol could be used very effectively, with roughly equal countervailing advantages. This has not stopped proponents of either fuel from vociferously arguing their unique advantage and pushing for FFVs based exclusively on their favored product. To date, the more effective faction in this debate has been the ethanol group, backed as it is by the powerful farm lobby.
Given this political support, and no decisive technical argument in favor of methanol, the question might well be asked: why not just go with the stronger side and implement an exclusively ethanol/ gasoline FFV economy? The answer has to do with the total resource base. If we want FFVs not merely to benefit farmers, but to make
The
So if we are to use alcohol fuels to achieve energy independence, a broader resource base is needed. This can be provided by methanol, which can come from both a broader array of biomass materials and also from coal and natural gas. Methanol production from coal is particularly important, since coal is
Even with methanol in the mix, the shifting of the world from a petroleum to an alcohol standard would remain a great boon to farmers.
By providing
THE MEGA FIX FOR WHAT AILS US
Energy conservation offers only a strained strategy for enduring economic oppression with very slightly ameliorated pain. Today’s petroleum monopolists would still ultimately have us over a barrel. The ballyhooed hydrogen economy, meanwhile, is a hoax.
If we are to win the critical energy battle, there is only one way to do it. We must take ourselves, and the rest of the world, off the petroleum standard. Only by doing this can we destroy the economic power of our enemies at the very foundations. Only in this way can we transfer control of the future from those who take their wealth, pre-made, from the ground (and therefore have no need for education or freedom), to those who make their wealth through hard work, skill, and creativity (who thus must build free societies which maximize the human potential
of every citizen).
Our nation’s founders stipulated that the purpose of our government is to provide for our defense, promote our welfare, and secure the blessings of liberty to ourselves and our posterity. In our current economic and military dilemma, decisive action for energy independence is one of the most dramatic steps we could take to achieve those ends. Congress should immediately require that all future vehicles sold in the
Dr. Robert Zubrin, president of the aerospace engineering and research firm Pioneer Astronautics, wrote The Case for Mars, and other books.
Labels: biofuels
0 Comments:
Post a Comment
<< Home